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ABSTRACT: We propose and compare different strategies to construct
dynamic density functional theories (DDFTs) for inhomogeneous
polymer systems close to equilibrium from microscopic simulation
trajectories. We focus on the systematic construction of the mobility
coefficient, A(r,r’), which relates the thermodynamic driving force on
monomers at position r’ to the motion of monomers at position r. A first
approach based on the Green—Kubo formalism turns out to be
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impractical because of a severe plateau problem. Instead, we propose to time

extract the mobility coefficient from an effective characteristic relaxation

time of the single chain dynamic structure factor. To test our approach, we study the kinetics of ordering and disordering in diblock
copolymer melts. The DDFT results are in very good agreement with the data from corresponding fine-grained simulations.

1. INTRODUCTION

Inhomogeneous polymer systems assemble into ordered
morphologies due to incompatible interactions between
different constituents in the systems."” These assembled
morphologies have found applications as thermoplastic
elastomers,” materials for drug delivery and release,* gas
capture,5 water puriﬁcation,6 energy conversion,7’8 and also in
soft lithography.” Understanding the relation between the
molecular features of polymers and the ordered morphologies
formed by them has been a subject of active investigation for a
long time."””"* An equally interesting topic is the effect of
polymer dynamics on the process of self-assembly,"* for
example, on the kinetics of defect formation depending on the
way a nanostructured polymer material is processed.'>~" This
has led to experimental and theoretical investigations to
understand the polymer dynamics in inhomogeneous systems
and its effect on the formation of ordered morphologies.
Different scattering and reflectometry techniques have been
employed to study the kinetic pathways leading to order—
order and order—disorder transitions in block copolymer
systems.””~>” The same techniques are used to investigate the
adsorption dynamics and the formation of interfaces in an
incompatible homopolymer blend.”*™*” However, the dynam-
ics in inhomogeneous polymer systems involves relaxation
processes occurring over multiple length and time scales. For
example, the molecular features of polymers determine the
local rearrangements of chains. On the other hand, the
mesoscopic ordering of polymer chains takes place on length
and time scales which are multiple orders of magnitude higher
than the molecular length and time scales. As a result, finding
an experimental technique that can capture the dynamics over
the entire spectrum of length and time scales is an extremely
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involved task. Dynamic density functional theory
(DDFT)*®™* or the dynamic self-consistent field theory
have been promoted as a theoretical alternative to study the
polymer dynamics on the relevant mesoscopic length and time
scales.

In a DDFT, the dynamics of an inhomogeneous polymer
system is described by a diffusive equation in the monomer
densities

dp,(x, t) , , /
T ; Vr[/dr Ay, )V, 1 (x', 1) (1)

Here, p,(r, t) is the density of monomers of type a, Aaﬁ(r, r')
is the mobility matrix and — V,u,(r’, t) a local thermodynamic
force acting on monomers of type f. The matrix A(r, r')
relates the monomer density current to the thermodynamic
driving force™ and depends on the monomer—monomer
correlations in the system. The field y(r, t) can be interpreted
as a local chemical potential for unconnected monomers of
type f and is derived from a free energy functional F, (i..,
pg(r', t) = 6F/Spy(r', t)), which is typically taken from self-
consistent field (SCF) theory. Since p,(r,t) are coarse-grained
quantities, their dynamic evolution equations describe the
kinetics in the system on mesoscopic scales. A typical SCF
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theory™ ™"’ for polymers retains microscopic information on
the chain architectures. This combination of mesoscopic and
microscopic aspects makes DDFT a promising technique in
the pursuit of studying polymer dynamics in an inhomoge-
neous system. DDFT has been used to explore the kinetic
pathways for micelle to vesicle transition in the micellar
solutions,*®*’ morphological transitions in the diblock
copolymer melts’™>* and also scaling laws for the polymer
interdiffusion during interfacial broadening in the polymer
blends.**™*® DDFT models have also been extended to study
the effects of hydrodynamics®”*® and reptation.””" Recent
investigations have also used DDFT in conjunction with the
string method®' to determine the mean free-energy path for
pore formation and rupture in cell membranes.”

Although DDFT has significantly advanced our under-
standing of polymer dynamics, it suffers from the problem that
DDFT models are typically constructed in an ad hoc manner.
The dynamics of polymers is well-known to be governed by
relaxation processes on multiple time scales.”> When projecting
the dynamical equations for monomer coordinates onto a
dynamical equation for densities such as eq 1 in a systematic
manner, for example, using the Mori-Zwanzig formalism,**%°
this invariably results in a generalized Langevin equation with a
memory kernel.®® In DDFT, the memory kernel is replaced by
one single, time independent (but nonlocal) effective mobility
function. This greatly increases the computational efficacy of
the resulting coarse-grained model, however, the optimal way
to choose such an effective mobility is not clear.

Currently, all approaches in the literature are based on
heuristic assumptions. For chains in the Rouse regime, these
approximate schemes can broadly be categorized into local and
nonlocal approaches.”” In the local approach, monomers are
assumed to diffuse in the system independent of each other. In
the nonlocal approaches, polymers are assumed to diffuse as a
whole. These approximations significantly reduce the complex-
ity in handling the DDFT equation. However, they come with
their own caveats. Most importantly, it was found that the
choice of DDFT approach may influence the pathways of self-
assembly that are observed in DDFT calculations. One
example is the dynamics of vesicle formation from homoge-
neous nucleation, where nonlocal DDFT calculations predicted
the existence of competing pathways of self-assembly”®*’
(which was then confirmed both by experiments®®~ " and
simulations”' ~’*), whereas only one pathway was present in
local DDFT simulations.”> Moreover, local DDFT calculations
greatly overestimate the frequency of vesicle fusion events,”®
which are largely suppressed in nonlocal DDFT simula-
tions’”’® consistent with experiments.”” When comparing to
particle-based simulations, local DDFT calculations generally
tend to overestimate the speed of structure formation, and
nonlocal DDFT calculations tend to underestimate it.”*®””°

It should be noted that none of these approaches
incorporate knowledge on the microscopic dynamics in the
underlying polymer dynamics. In recent years, bottom-up
coarse-graining techniques have become increasingly popular
in materials science, where coarse-grained models are
constructed from fine-grained simulations in a systematic
manner. Examples are techniques for deriving effective
potentials in coarse-grained models’” ™ or effective friction
coefficients® or even memory kernels®™* in dynamical
equations. Since SCF models bridge between microscopic
and the mesoscopic length scales, it should be possible to apply
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similar ideas for the construction of DDFT equations in order
to improve their predictive capabilities.

In this article, we explore two physically motivated bottom-
up construction schemes for determining DDFT mobility
functions A(r, r’) from microscopic simulations. In the first
approach, we follow a classical approach to this type of
problem and consider the Green—Kubo relation”™ that
relates A(r, r') to an integral over an appropriate current—
current time correlation function. Unfortunately, the result
turns out to be not very useful, for reasons that we shall discuss
below. In a second approach, we therefore propose to extract
A(r, r’) from the characteristic relaxation time of the dynamic
structure factor of single chains.

To test our approach, we study two related problems. The
first is the dynamics associated with the formation of the
lamellar structure in diblock copolymer melts, and the second
is the relaxation of a lamellar structure into a homogeneous
state. We specifically choose these problems because existing
local and nonlocal DDFT schemes are known to significantly
under- or overestimate the time scales of (dis)ordering in
comparison to fine-grained simulations of the same systems.
We show that the bottom-up constructed DDFT models are
able to capture both the global dynamics and the relaxation
due to local rearrangements of the chain at the relevant length
scales. This significantly improves the DDFT predictions for
the above listed problems.

The rest of the manuscript is organized as follows: In the
next section, we first introduce the general framework of
DDFT theory and briefly describe the Ansitze for mobility
functions that have been proposed in the literature. Then we
present and discuss our two bottom-up approaches. Finally, in
the fourth section, we apply the approach to the study of
ordering and disordering in diblock copolymer melts. We
conclude with a summary and an outlook.

2. GENERAL FRAMEWORK OF DDFT

The dynamic density functional theory is an extension of the
classical density functional theory, where the equilibrium free
energy of a many-body system is expressed as a functional of
coarse-grained field variables, the density fields.”"”*"” A
mathematical basis for this formalism is provided by the
Hohenberg—Kohn theorem.””” Here we consider polymer
systems with different types of monomers @, hence our free
energy functional depends on several fields, F({p,}). In
practice, we will use the functional provided by the self-
consistent field (SCF) theory,” " which is a mean-field
approach.

The objective of the DDFT is to construct a physically
motivated scheme for the dynamical evolution of the
microscopic densities, based on the given static functional.
Such a scheme is expected to drive the system along a path of
low free energy with meaningful dynamic information, in order
to reach the equilibrium state or at least a metastable minimum
of F. Since the density is a conserved field, its longest-
wavelength Fourier components are slowly relaxing variables."”
This motivates the construction of a diffusive equation that
involves the dynamic evolution of density fields only, resulting
in so-called model B dynamics according to the classification of
Hohenberg and Halperin.'*’

A simple popular Ansatz is to assume the linear
instantaneous form

https://dx.doi.org/10.1021/acs.macromol.0c00130
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()pa(r, t) , , ,
— = Vr; fdr Ngp(r, 1) Vopy(x', t) o

with pi4(r, t) = 6F/8py(x, t). The mobility function A4(r, r')
relates the density current of the monomer @ at position r to
the thermodynamic driving force (—=Vyy) on the monomer
at position r’. In the present paper, we will consider single-
component homopolymer or copolymer melts with average
monomer density p, and assume that all chains have equal
length N. Furthermore, to simplify the notation we will often

use reduced quantities ¢, = p,/pq, ﬁﬁ = gSF/&/’Jﬂ = N,uﬁ, and
A=A/ polN, which allows us to rewrite eq 2 as

a¢% (r, t) / A ’ o) ’

# = Vr; fdr Ay, r )Vrr,uﬂ(r , t) 5

We note that the instantaneous assumption is questionable
in polymeric systems, which are known to exhibit memory
effects,® as already discussed in the introduction. In DDFT,
one implicitly assumes that the memory kernel can be replaced
by a simple, time-independent (but not necessarily local)
function. A second important approximation, which is typically
made in polymeric DDFT approaches and which we will also
adopt here, is a mean-field approximation. In the spirit of the
SCF theory, which provides the static density functional F,
polymers are assumed to move independently in an external
field provided by the other polymers. This field may include
hydrodynamic flows and even entanglements, but only in an
averaged sense. Hence the mobility function A describes the
mobility of individual chains. It includes effects of intrachain
monomer correlations but not those of interchain correlations.
From eq 2, one can thus extract a mobility function per chain,
given by AY = AN/p, = AN,

For melts in the Rouse regime (i.e., chains are non-
entangled), three types of Ansatz for the mobility coefficients
have been proposed in the literature:

i. Local Coupling Scheme. In this approximation,
monomer beads are assumed to diffuse independently of
each other with the mobility Dy/kyT.>® This leads to the
following expression for A (r, r')

A Local

a/;‘ (1‘,1‘)—

D, 0 ’
RO = ) "
ii. Chain Coupling Schemes. These approaches assume
that the internal structure of the polymer chain relaxes on a
time scale much faster than the collective motion of the chain.
As a consequence, the polymer chains are assumed to diffuse as
a whole with the mobility D. = Dy/N. For this case, Maurits et

59
al. have derived the expression

A Chain

D Py(r, v, t)
Aoy "(x, v, 1) = e T 0

kT pN )
where P(r, r', t)/poN is the pair correlation of monomers a,
B on the same chain at position r and r’, normalized to the
integral one. Within the SCF theory, this quantity can be
calculated exactly using a scheme proposed earlier by two of

7 Further approximations have been proposed, such as the
external potential dynamics (EPD) approximation (not
discussed here) and the Debye approximation, which
approximates P,s/p, by the pair correlations of ideal Gaussian
chains, that is, the Debye correlation function®®

3411

~ Debye ,

rr') = r
(7)== ) "
Analytical expressions are available for the Fourier
representation of g(r — r’). For example, for diblock

copolymers one obtains*”'*!
8..(1) = Nfy (hy, x)
N

AB ;{fD(I) x) _fD(hA) x) _fD(hB: x)} )

where x = qué, h, is the fraction of block a, and

fo(hy x): = %(hx + e ™ — 1) is the Debye function.

iii. Mixed Coupling Scheme. The predictions of DDFTs
based on local or nonlocal schemes have been compared to
simulations, and both were found to have shortcomings. 657 In
a previous paper,”” two of us have therefore proposed a mixed
scheme where the dynamics is assumed to be governed by a
local mobility function on short wavelengths and a nonlocal
one on large wavelengths. To this end, a filter function I'(r)
was introduced that filters out the long-wavelength part of the
thermodynamic driving force via a convolution integral

fSonlocal(r) _ _/dr'F(|f — 1‘,|)Vﬁa(1‘,) (8)
with
—1’2
I(r) = (270”)? eXP{ }
)

This “coarsened” force is then taken to drive nonlocal chain
iffusion, whereas the remaining par
dith , wh th t
A Local A Nonlocal

(r) = -V, (r) - (r) (10)

drives local rearrangements of the chain via a local mobility
coefficient. The resulting interpolated scheme has the form

N Nonlocal ~Nonlocal A Local ~Local

E——vz/d'maﬁ LB + Ay (o )E T ()
(11)
where A Norl<el can be any of the chain coupling schemes

discussed above. The tunable parameter ¢ determines the
length scale of crossover between the local and the nonlocal
dynamics. When referring to mixed scheme DDFT calculations
in the present paper, these are carried out by mixing local and
Debye dynamics with the filter parameter 6 = 0.3R,, a value
found to be optimal in our previous work.®’

3. APPROACHES TO DETERMINE DDFT MOBILITY
COEFFICIENTS FROM MICROSCOPIC
SIMULATIONS

The expressions for the mobility coefficients discussed in the
previous section were postulated more or less heuristically
without much input on the underlying microscopic dynamics.
The only parameters that can be used to match the
microscopic and the DDFT dynamics are the diffusion
constant and, in case of the mixed scheme, the tuning
parameter 0. The purpose of the present work is to derive
more informed bottom-up schemes, where the mobility
coefficients are calculated from simulations of a microscopic
reference system. We have explored two such approaches
which we will now discuss below.

https://dx.doi.org/10.1021/acs.macromol.0c00130
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In both cases, we will assume that our system is
homogeneous, hence A(r, ') is translationally invariant. We
can then conveniently rewrite the DDFT equations in Fourier
representation as

atpa(q) t) = _qzz Aaﬂ(q)ﬂﬁ(q) t)
b (12)

with p4(q, t)/V = 6F/6ps(—q, t). Here and throughout, we
define the Fourier transform via®

fla) = fasss, s = égeﬂ'w

3.1. Green—Kubo Approach. The first approach is based
on the Green—Kubo formalism, which is a standard tool to
determine transport coefficients from simulations. Let us first
recapitulate the general formalism.”"”>'°> For a given
microscopic system with Hamiltonian H, we consider the
linear response of a quantity A to a perturbation of H caused
by a generalized field Z; that couples to a quantity B (i.e, H =
Hy, — ZgB). According to the Green—Kubo formalism, the
response is given by (A) AapZyp with
Aap = —kBLTfOOO dt(A(t)B(0)) in classical systems.

To apply this formalism to our DDFT problem, we choose A

= pa(q, t) and B = py(q, t), where p,(q, t) (with { = a, f) is
derived from the monomer coordinates Ry(t) via

pg(q, t) = Zk eiq'Rk(t)}/k(O with ¥ = 1 if monomer k is of
type ¢, and 7¥) = 0 otherwise. This results in A = iq -j,(q, t)
and B = —iq j;(q, t) with jé,(q, t) =2, e’q'Rk(t)Rk(t)}/k@. The
continuity equation for p, in Fourier representation reads
0p,(q, t) = iqj,(q, t) = A. From eq 12, we hence know A =
—q" Y A ap(@p5(q), where (—4(q, t)/V) couples to B. Now,
in the linear response regime an external field Zj coupling to B
would contribute additively to (—4(q, t)/V) and generate the

same response, hence we can identify A5 = 4,5/q°V and the
Green—Kubo formalism results in the following expression

VkBT A dt(ia(fb t)j/;(_q; 0)>: qq (13)

with q = q/q and the tensor products jj and qq.

However, the numerical evaluation of this expression and a
theoretical analysis for the special case of Rouse chains shows
that eq 13 yields zero for all nonzero q. This is demonstrated in
more detail in the appendix. Only at q = 0 do we recover the
familiar Green—Kubo expression for the diffusion constant.

The reason becomes clear if we recall the premises
underlying the Green—Kubo relations. They describe the
response of stationary currents to generalized thermodynamic
forces. In our case, at g # 0 a stationary current is not possible,
since it would generate indefinitely growing density fluctua-
tions p(q, t). Since p(q, t) must saturate eventually, the flows
j(q, t) will average to zero at late times, independent of the
applied generalized forces. Therefore, the Green—Kubo
transport coefficients must vanish for any nonzero q. Stationary
currents are only possible at q = 0. Hence the Green—Kubo
formalism is not suitable for determining q-dependent mobility
functions for DDFT models.

In fact, this problem is not uncommon in applications of
Green—Kubo integrals.'””'** For example, confinement can
prevent stationary currents, which is why Green—Kubo
integrals may vanish in confined systems, even if locally, a

Aaﬁ(q) =

3412

description in terms of a Markovian dynamical equations with
well-defined transport coeflicients is appropriate. The q-
dependent Green—Kubo integrals considered here, which
describe the response to a spatially varying field, vanish for a
similar reason. One popular solution to this problem has been
to assume that the time scales of local Markovian dynamics
and global constrained dynamics are well separated and to
search for a plateau in the running Green—Kubo integrals. In
our case, however, the running integrals do not exhibit a well-
defined plateau (data not shown). We will discuss this point
further in Section S.

3.2. Relaxation Time Approach. In the present
subsection, we describe an alternative approach to deriving
DDFT mobility coeflicients from microscopic trajectories: We
propose to estimate them directly from the characteristic
relaxation time of the single chain dynamic structure factor.

To motivate our Ansatz, we begin with discussing some
implications of the DDFT equations. We consider the
dynamics of a single tagged chain s with corresponding
monomer density Y. In the mean-field spirit, the DDFT
equation for p%) in Fourier representation takes the form

apP(g t) = —4" Y AN @r (g, t)
p (14)

where A® = AN? is the mobility per chain, and yﬁfs)(q) =
VSF®)/ 5/)25) (—q) is derived from the free energy FY of a single
chain that moves independently in the averaged background
provided by the other chains. Next we multiply both sides with
pf,s)(—q, 0) and average over chain conformations. Identifying

2., (0 1) = (o (a, )p” (=g, 0)), we obtain
2
og, (@ ) = ‘%Z} A@ (@, Do (~q, 0))
/

(13)
To proceed, we expand F® in powers of p*)(q), giving

kT
(s) — B (s) -1 (s)
FY = t.+—— E - , 0 + -
cons 5 - 14 ( ‘I)§ (q )£ (‘l)

(16)
Here and in the following, we use a matrix notation for
A2 (Aaﬂ), and so forth.

. . A
convenience, that is, p = (pa), A
Taking the derivative with respect to p/gs)(—q), we obtain

E(S)(q) ~ kBT%ig_l(q)B(s)(q). Inserting this in eq 15 yields

ke Tq . _
og(g ) » — =A@ (g 0)g(a, 1)

(17)
which can be solved in matrix form, giving
kyTq® _
8@ 1) = exp =2 Aq)g ™ (a, 0)t|g(q, 0)
= N = 18)

This equation approximates the relaxation of the single chain
under three assumptions: (i) memory effects were neglected
(the basis of the DDFT approach), (ii) a mean-field
approximation was made (in eq 14), and (iii) density
fluctuations were assumed to be small (in eq 16). Within
these approximations, the relaxation of the chain is determined
by a q-dependent “relaxation time matrix” T(q),

g(q, t) = exp(—tl_l(q))g(q, 0) and, using é(s) = éNz, we
can identify

https://dx.doi.org/10.1021/acs.macromol.0c00130
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Alq) = T(a)g(q, 0)

kyTq'N = (19)

We can further simplify this expression by assuming that the
relaxation of the chain is governed by a single q-dependent
time constant 7(q), that is, T(q) = 1-7(q). Then eq 19 can be
rewritten as

A@=—t (g0
A = S N2 (20)

The considerations above suggest the following procedure to
determine an effective mobility coefficient for the DDFT
model: We first conduct fine-grained simulations of the
polymer melt in a homogeneous reference system (ie., in
the case of the diblock copolymer melt, below the order—
disorder transition (ODT)). From the simulation trajectory for
the full g(q, ), we compute the relaxation time 7(q) and insert
it in eq 19 or eq 20.

The question remains how to define the characteristic
relaxation time. This question is nontrivial, because the actual
behavior of g(q, t) is driven by a multitude of time scales,
corresponding to the different internal modes of the chain. At
late times, the slowest diffusive mode dominates, and g(q, )
has the limiting behavior®® lim,_.g(q, t) o exp(—=Dg’t),
giving 7 = 1/D.g* Inserting this in eq 20, we recover the
Ansatz of nonlocal Debye dynamics, (see eq 6)

Alg) = Nf; 8(a).

However, by the time when this limiting behavior sets in,
much of the structuring has already taken place. It would be
more desirable to define 7(q) such that it captures the
dominant time scales of structure formation on the scale q. In
the present work, we test two prescriptions for determining 7

and then calculate é via eq 20

R

I>>

1 (s o]
from 7, = —/ dt g(q, t)
* 7 g(q,0)Jo (21)

A TE !
A*: from g(q, t=1) =g(q, 0)/e (22)

where e is the Euler number and g(q, ) is the full single-chain
structure factor

glg t) = Zgaﬁ(q, t)

a,p (23)

In a third approach, we generalize eq 21 to extract a full
relaxation time matrix

AT e _
A": from T(q) = fo dt g(q, g (g, 0)

(24)
and use that to determine é via eq 19. Calculating é with this
method involves matrix inversions and multiplications for
every value of q. However, in the case of symmetric A/B
diblock copolymers with fully equivalent A and B blocks, the
prescription can be simplified. For symmetry reasons, g, T and

A then have the same matrix structure (M(,/,a) with My, = Mgg,
M, = Mg, and thus share the same Eigenvectors, (1, 1) and
(1, =1). Using these to diagonalize g and T, we obtain

00, 200.0)

A

R (25)

3413

[A\AB(q) — g(‘l; 0) _ A(q: 0))

1
4kBTq2N( 7 (26)
with g(q, £) and 7y defined as above (eqs 23, 21), A(q, t) =
ga(q 1) + ges(q, 1) — gas(q ) — gealq 1), and

l o0
= mA dt A(q, t)

In practice, determining the integrals (eq 21) and (eq 24) by
numerical integration of simulation data only is not possible
for small g, because the relaxation time diverges for ¢ — 0.
Therefore, an extrapolation procedure must be devised. At late
times, g,4(q, t) is known to decay exponentially® according to
g(q, t) ~ exp(—¢’D.t). Hence we make the Ansatz

8,5(0 1) = 8,5(a, 1))exp(~q"Dge(t = 1)

53

(27)

for large t, t; with t > t,. Specifically, we fit the data for g,(q, t)
to eq 27 in time windows t € [, tf] , usin§ the weighted least-
squares fit module in the Matlab suite'” and then choose
those values of t;; which yield the value of D that is closest to
the theoretical value, D, = Dy/N. The integrals over t in eq 21
and eq 24 are then evaluated by first numerically integrating
the data up to t = ¢, and then using the extrapolation (eq 27)
in the integral from ¢ = ¢; to infinity. Typical values for t, t;are t;
~ 20t; and t; ~ 40t,.

Figure 1 shows results for the g-dependent mobility
functions of homopolymers in a homopolymer melt. They
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Figure 1. Normalized mobility functions of homopolymers with
length N = 40 in a melt, as obtained via the relaxation time method
(eq 20) with Brownian dynamics (a) and inertial dynamics (b)
simulation data. Two prescriptions for determining the single chain
relaxation time are tested, 7 (green, eq 21) and 7, (blue, eq 22). Also
shown for comparison are the results from the Debye and the local

approximation ((AP*®*(g), red) and (A™<!(q), black)).

were extracted from Brownian dynamics simulations (massless
monomers, Figure la) and molecular dynamics simulations
(massive monomers, Figure 1b) of melts of Gaussian chains
with length N = 40, using the prescriptions eq 21 and eq 22.
We note that in the case of homopolymers, the prescription eq
24 is equivalent to eq 21. For comparison, we also show the
mobility functions corresponding to the local and the Debye
approximation. In the local scheme, the mobility is constant; in
the Debye scheme, it is proportional to the static structure
factor. The results from the relaxation schemes are
intermediate between the local and the Debye scheme. At
small g, they follow the Debye scheme. At larger g, the mobility
is enhanced, hence small wavelength modes relax faster. The
effect is more pronounced for Brownian dynamics than for
inertial dynamics, most likely because the inertial time scale
contributes to the total relaxation time at small wavelengths
(see also Figure 10b).
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Thus, we find that the mobility functions obtained with the
relaxation time approach interpolate between the nonlocal
mobility function (at small q) and the local mobility function
(at larger g). This seems promising, since our previous studies
have suggested that such an interpolation may be necessary to
capture the kinetics of structure formation in copolymer
systems.”” We will now test our DDFT approach by
performing a systematic comparison of fine-grained simula-
tions and DDFT predictions for the ordering/disordering
kinetics in block copolymer melts.

4. APPLICATION TO DIBLOCK COPOLYMER MELTS

We consider melts of n. block copolymers containing N, beads
of type A and Ny beads of type B, in a box of volume V = L, X
L, X L, with dimension L, in i direction and periodic boundary
conditions. The average monomer density is thus p, = nN/V.
Polymers are modeled as Gaussian chains, that is, chains of
“monomer beads” connected by harmonic springs. The
nonbonded monomer interactions are characterized in terms
of a Flory—Huggins parameter y, which controls the
incompatibility between A and B monomers, and a Helfand
parameter &, which controls the compressibility.

We carry out fine-grained simulations of order/disorder
processes in such systems and compare them with DDFT
calculations, using the SCF free energy functional and mobility
functions that are extracted from fine-grained simulations at y
=0.

Throughout this paper, lengths will be represented in units
of the radius of gyration R, of an ideal chain of length N = N,
+ Nj, energies in units of the thermal energy, k3T, and time in
units of t, = R;/DO, where D, is the monomer diffusivity.

4.1. Model and Methods. 4.1.1. Fine-Grained Model
and Simulation Method. Since we focus on a comparison of
dynamical properties of particle-based and field-based models
here, we use as fine-grained model a particle-based
implementation of an Edwards model,'”""% where the
nonbonded monomer interactions are described by the same
Hamiltonian than that underlying the SCF free energy
functional. At sufficiently high polymer density and sufficiently
far from critical points, the static properties of such models are
known to be well represented by SCF functionals without
much parameter adjustment.’”

Nonbonded interactions are thus expressed as a functional
of the local monomer densities.'”” Let R, ; ; denote the position
of the jth monomer on the mth chain. The Hamiltonian H
describing the monomer interactions is then expressed as

4—22(1{ m,j

gmljl

+ pyr [ e (b0
+ poxfdr(rﬁA(r) + y(r) — 1) (28)

where the first term represents the bonded interactions in the
polymer, and the last two terms correspond to nonbonded
interactions. The quantities ¢a(r) are the normalized micro-
scopic densities of a-type beads (@ = A or B) at position r,

A 1

defined as, ¢ (r) = ;ij S(r — ij) 5, where 7,,; = A or B
0

characterizes the monomer sequence on chaln m.

In practice, the local densities are evaluated on a grid with

grid size Ax = Ay = Az = 0.1R,, using a first order cloud in the

2
kB m,j—l)
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cell (CIC) scheme.''” The grid size is an important ingredient
of the model definition, as it sets the range of nonbonded
interactions. In the simulations, we consider systems with

average monomer density p, = 3 X 10°/R 3, that is, roughly

50 monomers per grid cell. For thlS choice of densities and grid
111,112
parameters, grid artifacts are negligible, and the
renormalized values of y and « in the SCF theory are
practically identical to the corresponding “bare” parameters in
q 28.""" Furthermore, fluctuation effects are small. The
strength of thermal fluctuations can be characterized by the
Ginzburg parameter,””*” C™' = V/n Rg In our system, this
parameter is C' = 0.01 or less
Monomers (m, j) with mass M,,
a Langevin equation
oH

m,](t) = —I - FV +

m,j

evolve in time according to

V2UkT £, (t)

The first term on the right-hand side describes the
conservative interaction forces, the second term corresponds
to a friction force (with v = dR/dt and the monomer friction I"
= 1/D,), and the last term to a stochastic force representing
the effect of thermal fluctuations, where f, (t) is a Gaussian
distributed random noise with zero mean and variance (f, (t)
£.(t)) = 5m"5]k15(t — t'). Hydrodynamic interactions are thus
neglected, and since the interaction potentials defined by eq 28
are soft, entanglement effects are not included as well. We
consider the two cases M,,; = lkBth/R (inertial dynamics)
and M,,; — 0 (overdamped dynamlcs) In the second case, eq
29 is replaced by

dR,,,

dt

(29)

DT

The equations of motion are integrated using the Velocity—
Verlet scheme''>''* in the case of inertial dynamics (eq 29),
and the Euler—Maruyama''® algorithm in the case of
overdamped dynamics (eq 30) with the time step 5t = 0.001¢,.

Specifically, we consider copolymer melts in a simulation
box of size Ry X Ry X 3R,. Unless stated otherwise, we consider
symmetric copolymers, that is, N, = Nj, with total length N =
40. For comparison, we also study copolymers with length N =
20 or N = 100 and vary the A/B fraction. In all cases the
> X 10°/R;. The
Helfand parameter is set to kN = 100. The systems are initially
prepared by growing polymers at randomly picked points in
the simulation box. In three independent runs, configurations
are then equilibrated for 300 000 time steps each. Data for g(q,
t) are subsequently collected over 200 000 time steps and used
to extract the mobility functions. In a set of additional
simulations, we monitor the formation of lamellar structure in
the melt after a step change from yN = 0 to a finite yN above
the ODT, and the decay of the lamellar structure after a step
change from finite yN to yN = 0. The systems are equilibrated
as described above and the time evolution is then monitored
over 100 000 time steps in 10 independent runs.

4.1.2. SCF Free Energy Functional. As discussed earlier, we
use the SCF theory to construct the free energy functional in
our DDFT equations. The SCF theory is one of the most
powerful equilibrium theories for inhomogeneous polymer
systems and has been well documented elsewhere.”” """
Here, we just briefly summarize the main equations, adjusted
to our system. We model the copolymers as continuous

£,,(t)

(30)

monomer density is kept fixed at p) =

https://dx.doi.org/10.1021/acs.macromol.0c00130
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Gaussian chains,*"'® and parametrize the contour length by a

continuous variable s € [0:1]. The free energy functional
F[{¢,(r)}] of our block copolymer system is expressed as
F

o %{ [ drleng, (),®)

)

a=A,B

N + 4 0) - 11— X [ (o)

—VinQ} (31)

where ¢, is the normalized density field of monomers of type
a, w, is the corresponding conjugate field, and Q is the single
chain partition function in the external field w,. The conjugate
fields are determined implicitly by the requirement

ho = MY s g, 9g,0 1 — )
N,V ,Ng/N
ey AR TCEICTE TR

Here q(r,s) and g(r,s) are the end-integrated forward and
backward chain propagators, respectively, which can be
obtained from solving the following differential equation

9q(r, s)

= RgZVZq(r, s) — o(r)q(x, s) (33)
with initial condition qu(r,O) =1 and o(r) = w,(r) or wy(r),
depending on s: g{r,s) is obtained by setting w(r) = w,(r) for
s < N/N and o(r) = wg(r) otherwise, and g,(r,s) by setting
o(r) = wy(r) for s < N/N and w(r) = w,(r) otherwise.
Knowing ¢ or gy, one can calculate the single chain partition
function Q via

1 1
Q= ;fdr q(r, 1) = ;/dr q,(r, 1)

At equilibrium, F[{¢,(r)}] assumes a minimum with respect
to ¢,(r), leading to a second set of conditions for the values of
the conjugate fields, @

(34)

wﬁCF(r) = yN¢, + 2kN(¢, + ¢, — 1)
w5 t(x) = yNg, + 2kN(¢, + ¢, — 1) (35)
However, in DDFT calculations, these conditions are not

imposed. Instead, the system is dynamically driven toward the
equilibrium state via the diffusive dynamical eq 3 with fi,(r) =
(@5 (r) = @y(r)).

The SCF and DDFT calculations in the present work are
effectively one-dimensional, that is, we assume that densities
vary only in the z-direction. Space is discretized with grid size
Az = 0.1R; The propagator equation, eq 34. is solved using the
pseudo spectral scheme*” with discretization As = 0.01. As in
our earlier work,”” the time step in the DDFT calculations
depends on the DDFT scheme. We use At = 10~*,N for
DDFT calculations based on Debye dynamics or any of the
other predetermined mobility functions A(r — r') discussed in
Section 3.2, At = 107N for full chain dynamics, eq 5, and At
= 107%,N for local dynamics (eq 4) or mixed dynamics (eq
11).

4.2. Mobility Functions. On the basis of simulations of
the fine-grained model discussed above, mobility functions
were extracted from the simulation data using the different
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variants of the relaxation time approaches discussed in Section
3.2. In the following, we will consider melts of symmetric A/B
diblock copolymer melts.

Figure 2 shows the results for the full-chain mobility
function, A(q) = ZaﬁAaﬁ(q) for different chain lengths (N =

a_) B ]irowman ]jynamlcs ]2 I I Ilnelrtié] ]ijﬁarhicls
) 8, yN=0 0-©N=20 { F
B o N e A %XN_O N
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Figure 2. Normalized full-chain mobility function of symmetric A/B
copolymers in a melt, as obtained via the relaxation time method (eq
21) from Brownian dynamics simulations (a,c) and inertial dynamics
simulation data (b,d) for different chain lengths N or interaction
parameter y as indicated. Solid line in (a) shows theoretical prediction
for N = 40 obtained by inserting eq 46 into eq 21.

20, 40, 100) at fixed y = 0, and for different values of yN (yN =
0, S, 10) at fixed chain length N = 40. These values were
chosen such that (yN) is still below the value''**"” (yN)opr &
10.5 where the order—disorder transition sets in for symmetric
diblock copolymers, hence the melt is disordered and isotropic.
The behavior of A(q) at ¢ — 0 reflects the translational
diffusion of chains and takes the asymptotic value A = D.

Therefore, the curves are rescaled by the chain diffusion
constant D, which has been calculated independently from the
mean-square displacement of the chain. For example, for N =
40, we obtain DZ°= (0.0263 + 0.0001)R}/t, in Brownian
dynamics simulations, and D' = (0.0224 + 00003)R /ty in
inertial dynamics simulations, which is close to the Value for
free Rouse chains, D, = O.OZSR;/tO. Since the interactions
between monomers are very soft in the particle-based model,
they do not affect the diffusion constant significantly in the
disordered phase.

The full-chain mobility function is found to depend weakly
on the chain length N (Figure 2a,b), the effects being most
pronounced in the regime of high g. If one increases N, the
mobility function for high g decreases in the Brownian
dynamics case and increases in the inertial dynamics case, such
that both mobility functions approach each other. In contrast,
the Flory—Huggins parameter y has practically no influence on
the chain mobility function in the disordered regime (Figure
2¢,d)). Motivated by this finding, we will use the mobility
functions obtained at y = 0 in all DDFT calculations below.

Next we turn to the discussion of the monomer-species
resolved mobility functions A,s The results extracted from
Brownian dynamics simulation trajectories for symmetric
diblock copolymers of length N = 40 are shown in Figure 3
for the different relaxation time approaches discussed in
Section 3.2. Since AAA(q) ABB(q) for symmetric systems, and

https://dx.doi.org/10.1021/acs.macromol.0c00130
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Figure 3. Normalized mobility function [\a/} of symmetric A/B
diblock copolymers (length N = 40), obtained from Brownian
dynamics simulations at y = 0, using different variants of the
relaxation time method: eqs 21 (light green line), 22 (dark green
line), and 24 (blue line). Also shown for comparison is the result from
the Debye approximation (red line) and the local approximation in a
homogeneous melt (black).

AAB(q) = ABA(q), only the results for AAA(q) and AAB(q) are

shown.

If one assumes that the mobility matrix A is governed by a
single relaxation time 7(q) (eqs 21 or 22), the resulting
mobility curves are qualitatively similar to the curves obtained
from the Debye approximation (eq 6), except that A,4(q) is
enhanced at high g values like the full-chain mobility function.

However, if one derives A from a full relaxation time matrix
which is calculated accordmg to eq 24, the mobility functions
change qualitatively. The intrablock mobility AAA(q) becomes
much larger than in the other nonlocal schemes, especially at
small q. Hence monomer rearrangements inside blocks are
faster than anticipated in the Debye approximation. Never-
theless, AAA(q) never reaches the level of the local coupling
scheme, where monomers are taken to move independently
(AL"C“I( ) Al,gg“‘(q) 0.5D./kgT for symmetric A/B
copolymers in homogeneous melts accordlng to eq 4).

In contrast, the interblock mobility AAB(q) is much smaller
than in the other nonlocal schemes already at q = 0. It then
decreases further with increasing q and even becomes slightly
negative, until it rises again and reaches zero at large q. We
note that the slightly negative values of A,z(gq) do not

destabilize the system, since the Eigenvalues of A(q) are still
positive. The interblock mobility is practically zero for g values
above gR;, ~ 1. The same is obtained with a local
approximation, where the motion of A and B monomers is
also uncorrelated. )

_An important consequence is that the values of A,4(q) and
Aup(q) at g — 0 differ from each other in the relaxation time

AT
matrix scheme A (eq 24), whereas they are equal in the other
nonlocal schemes. This influences the prediction for the

relaxation of composition fluctuations m(t) (®4(t)
®5(t))/2. From eq 3, one can derive
1,4 N R
om(q, t) = —qz—(AAA(q) - Mp(9))i(q, t) (36)

where fi = (fi, — fig) is conjugate to m. If m(t) is small, one can
apply the random phase approximation (RPA)47 "5 and
approximate ji(q,t) ~ I',(q) m(q,t), where the RPA-coefficient
[,(q) can be identified with the inverse of the collective
structure factor of the copolymer melt. Expanding I',(q) in
powers of q and ne%lectmg compressibility effects, one obtains

the leading order' ® T,(q) 24 kBT/qué for symmetric

~
~
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diblock copolymers. At small g, eq 37 thus takes the limiting
form

12kg T

Aua(a) — Ayp(@))m(q, t)
g (37)

Since (A,4(0) — A,5(0)) > 0 in the relaxation time matrix
scheme, composition fluctuations are predicted to decay with a
finite relaxation time in the limit ¢ — 0. In the other nonlocal
schemes, one has (AAA(O) AAB(O)) 0 at q — 0, that is, the
relaxation time for long-wavelength compositional fluctuations
is predicted to diverge. In simulation studies,’”''® the
relaxation time is found to be finite and of order118 2/7%)
R;/D. (the Rouse time of the chain), implying (Aua(0) —
A,5(0)) ~ 0.41 D_/kgT. This is consistent with the data in
Figure 3 obtained with the relaxation time matrix method.

4.3, Comparison of DDFT Calculations with Simu-
lations. In order to evaluate the mobility functions discussed
in the previous section, we have compared DDFT calculations
with fine-grained simulations for different situations of
dynamical ordering/disordering in block copolymer melts. In
the following, we report the results for Brownian dynamics
simulations. The results for inertial dynamics simulations are
similar.

4.3.1. Relaxation of an Initially Lamellar Symmetric
Diblock Copolymer Melt into the Homogeneous State. In
the first example, we study the relaxation of an initially lamellar
block copolymer melt into a homogeneous state. Diblock
copolymer melts were prepared in a lamellar state by
equilibrating them above the order—disorder transition, that
is, at (*N)ime > (*N)opr- Then, starting from such a
configuration y was turned off (to y = 0) at time ¢t = 0 and
the evolution of the profiles was monitored. Figure 4 shows an

om(q, t)

- N=40
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Figure 4. Evolution of density profile of A-monomers after a sudden
change from (yN) ,,, = 1S to yN = 0 at t = 0, according to (a)
Brownian dynamics simulations and (b) DDFT calculations based on
the relaxation time method, eq 24.

example of a series of resulting density profiles for A
monomers at different times, as measured in a Brownian
dynamics simulation run (Figure 4a)) and the corresponding
results from DDFT calculations based on the relaxation time
matrix (Figure 4b)). The DDFT calculations are in excellent
agreement with the simulations.

To further quantify the comparison, we plot in Figure S the
maximum value of the profile ®,(z) versus time for systems
that were initially prepared at (yN);,; = 15 (Figure Sa) and
(¥N);nie = 20 (Figure Sb). Symbols show the simulation results,
averaged over 10 independent runs, and lines show the results
from different DDFT calculations. We find that DDFT
calculations based on a chain coupling assumption (ie., full
chain dynamics, eq S, or Debye dynamics A P eq 6),

https://dx.doi.org/10.1021/acs.macromol.0c00130
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Figure 5. Relaxation of the maximum in the density profile of A-
monomers for configurations that were initially equilibrated in an
ordered phase at (yN);,; = 15 (a) and (yN);, = 20 (b) after a sudden
change to y = 0 at t = 0 for different DDFT schemes as indicated and
compared to Brownian dynamics simulations at N = 40. The initial
value ¢,y (t = 0) is the same in all calculations.

consistently underestimate the speed of the relaxation process.
DDFT schemes with mobility functions A" that were extracted
assuming a single relaxation time z(q) (i.e, egs 21 and 22)
perform better, but the dynamics is still too slow. The curves
calculated with the “mixed coupling” scheme,®’ eq 11, are close
by and also too slow. On the other hand, DDFT calculations
based on a local coupling assumption overestimate the
relaxation speed. In contrast, the predictions of DDFT
calculations based on the relaxation time matrix, that is, on
A" (eq 24) are in excellent agreement with the simulation data.

4.3.2. Ordering Kinetics in a Symmetric Diblock
Copolymer Melt. In our second example, we study the
dynamics of structure formation in the block copolymer melt
after a sudden quench from yN = 0 to some value (yN) >
(*N)opr- An example for the time evolution of an A-density
profile obtained from a Brownian dynamics simulation run and
compared to DDFT calculations based on the relaxation time
matrix is shown in Figure 6. In both cases, the initial density
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Figure 6. Evolution of density profile of A-monomers from an initially
disordered conformation after the monomer interaction is suddenly
raised from yN = 0 to N = 15 at t = 0, according to (a) Brownian
dynamics simulations and (b) DDFT calculations with mobility
function based on eq 24.

profile is exactly the same, that is, small density fluctuations in
the simulation profile were also transferred to the initial
configuration in the DDFT calculation. Nevertheless, the
agreement between simulations and DDFT calculations is less
impressive than in the relaxation case, Figure 4. First, the
location of the density maxima differs. This can be explained
from the fact that the maxima emerge spontaneously at
random positions in both cases. Second, the melt seems to
order faster in the simulations than in the DDFT simulations.
At the time t = 40t, after the quench, the amplitude of the
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oscillation in the A-density profile has almost saturated in the
simulations, whereas it has only reached about one-fourth of
the final value in the DDFT calculations:

On the other hand, looking at the simulations one notices
that the ordering time also differs between different simulation
runs. Figure 7 shows results for the maximum value of the A-

A,
=
Z
1]
w
(=)

xN=15.0

1 1 1
t [t,N] t [t,N]
Figure 7. (a) Original and (b) aligned curves for the time evolution of
the maximum in the spatial density of A-monomer after a sudden
quench from yN = 0 to yN = 1S at ¢t = 0 from 10 different Brownian
dynamics simulation runs.

monomer density profile as a function of time for 10 different
independent simulations, which all started from exactly the
same initial configuration at ¢t = 0. In every run, the lamellar
ordering sets in at a different time (Figure 7 a). However, if
one aligns the curves, that is, adds a time offset such that they
coincide at half-maximum, their slopes fall largely on top of
each other: The statistical spread of the onset of the ordering is
much larger than the statistical noise after the ordering has set
in. In the following, we therefore not only compare the kinetics
of ordering on an absolute time scale but also the shape of the
curves after they have been aligned.

Figure 8 shows the corresponding results for quenches to yN
=15 (Figure 8a,b) and to yN = 20 (Figure 8c,d), compared to
a DDFT predictions from the different schemes discussed
above. As reported in our earlier work”” and consistent with
our observations for the relaxation kinetics, Figure 5, DDFT
calculations based on local dynamics (eq 4, black line)
underestimate the ordering time, and DDFT calculations based
on global chain dynamics (full chain dynamics (eq S) or Debye
dynamics (eq 6), red lines) overestimate it. Using DDFT
mobilities that were extracted from bulk simulations assuming
a single relaxation time, (eqs 21 or 22, green lines), the
predicted ordering is faster than in the case of Debye dynamics
but still too slow.

The best results are again obtained with the DDFT scheme
AT based on the relaxation time matrix, eq 24. The ordering in
the DDFT calculations sets in later than in the simulations, but
once started the dynamics of ordering is comparable. The
delayed onset may be explained by the role of thermal
fluctuations in initiating the ordering process. The DDFT
calculations are purely deterministic and do not include
fluctuations. Since the initial configurations are chosen
identical to the simulated configurations, they include some
noise, and that noise has the correct amplitude. As we have
shown in earlier work,”’ the ordering would have been further
delayed in all DDFT schemes if the initial noise level had been
chosen lower. Nevertheless, adding noise to the initial
configuration of a deterministic DDFT calculation is
apparently not sufficient, if one wishes to faithfully reproduce
the onset of ordering. To improve on this, one would have to
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Figure 8. (ac) Time evolution of the maximum density of A-
monomers after a sudden quench from yN = 0 to when yN = 15.0 (a)
and ¥N = 20.0 (c), according to Brownian dynamics simulations
(symbols) and different DDFT schemes (lines) as indicated. The
initial density profile in z-direction is the same in all calculations. Gray
shades indicate spread of simulation curves (see Figure 7). (b,d) Same
curves, aligned in time ¢.

include thermal noise in the DDFT equations (see Section S).
Once initiated, the ordering proceeds in a deterministic
manner and is very well captured by the DDFT calculations
based on AT (Figure 8b,d, blue line).

The results from “mixed dynamics” calculations (eq 11, cyan
line) are also in very good agreement with the simulation data.
However, it should be noted that this scheme has been
postulated heuristically without any microscopic justification,
and it has one free parameter (the parameter ¢ in eq 9) which
has been optimized for this specific ordering situation in our
earlier work.”” In contrast, the mobility functions in the
relaxation time scheme were determined from independent
bulk simulations without any adjustable parameter. Also, from
a practical point of view mixed dynamics calculations have the
disadvantage that they require smaller time steps.

4.3.3. Asymmetric Diblock Copolymer Melt. So far, we
have evaluated our different DDFT schemes by examining
systems of symmetric diblock copolymer melts. To test
whether the results depend on the symmetry of the system,
we have repeated the analysis for a different A/B block
fraction. The results are shown in Figure 9. We consider the
same two situations as above: one where an initially lamellar
morphology (set up in the ordered phase at (yN) ;,; = 20)
relaxes into a homogeneous structure after turning y off, and
one where an initially disordered melt develops lamellar order
after performing a quench into the ordered phase at yN = 20.
The results are essentially the same as in the symmetric case:
when using DDFT with “local dynamics”, the dynamics is too
fast; when using global chain dynamics (Debye dynamics), it is
too slow. When using the relaxation time matrix approach, the
onset of ordering is slightly delayed in the DDFT calculations
compared to simulations but the actual ordering kinetics (the
shape of the curves) is in very good agreement with the
simulation data.
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Figure 9. (a) Normalized mobility function Agﬂ of asymmetric A/B
diblock copolymers with block ratio 6:4 and length N = 40 obtained
from simulations at yN = 0 with the relaxation time matrix approach
(eq 24). (b—d) Corresponding time evolution of the maximum spatial
density of A-monomers (b) after suddenly switching from yN = 20 to
#N =0 (c,d) and from yN = 0 to yN = 20 at t = 0 in absolute time (c)
and aligned in time (d). Symbols correspond to Brownian Dynamics
simulations with chain length N = 40, lines to results from DDFT
calculations as indicated. Gray shades indicates spread of simulation
curves from 10 independent configurations with identical starting
configuration.

5. DISCUSSION AND SUMMARY

The purpose of the present work was to develop systematic
bottom-up coarse-graining strategies for constructing nonlocal
mobility functions A(q) in DDFT models for polymeric
systems. The goal was to extract these mobility functions from
trajectories of fine-grained, microscopic simulations. We have
explored two physically motivated approaches.

The first was based on the Green—Kubo formalism.
However, the Green—Kubo integrals were found to always
vanish except at q = 0 because the corresponding stationary
current cannot exist at q # 0. It was not even possible to
identify a well-defined plateau in the running Green—Kubo
integrals. Espafiol et al.'”* have recently discussed such
“plateau problems” and proposed an alternative approach to
evaluating Green—Kubo transport coeflicients. They suggested
to analyze the late-time behavior of quantities

—(%C(t))c_l(t), where C(t) is the time-dependent correla-

tion function of the quantities of interest. In our case, the
relevant correlation function is the single chain structure factor,

g(q ). eq 17 yields

A(q) x —qz(atg(q, t))g_l(q, t)g(q, 0). Since the long-time
behavior of g(q, t) is dominated by the diffusive behavior of

Inserting

whole chains, one has g(q, t) o exp(—Dg’t) at t = oo and

hence gets A(q) « Dg(q, 0), which corresponds to Debye
dynamics. Thus, the resulting DDFT model is a “chain
coupling” model where chains move as a whole.

In practice, however, we are interested in local ordering
processes with characteristic time scales that are typically
smaller than the diffusive time. Therefore, we have explored a
second scheme, where a characteristic relaxation time matrix is
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first determined independently for each g-vector from fine-
grained simulations, and this is then used to derive a g-
dependent mobility matrix. As one can see from Figures 1 and
3, the resulting mobility functions are intermediate between
“chain coupling dynamics” (chains move as a whole) and “local
coupling dynamics” (monomers move independently). We
have tested the approach by examining two kinetic processes in
block copolymer melts: The process of disordering from an
initially lamellar phase and the process of ordering after a
quench into the lamellar phase. Comparing the DDFT
calculations with the simulation results, we conclude that our
new scheme is capable of describing the ordering/disordering
kinetics at a quantitative level. Although we applied our model
to study the order/disorder kinetics of lamellar structures only,
the method can be applied to other morphologies as well (e.g.,
spheres, cylinders, and so forth).

We should note that although the kinetics of ordering and
disordering are well-captured by the DDFT model, the onset
of ordering is later than it should be, compared to simulations.
We attribute this to the effect of thermal fluctuations, which
are omitted in our DDFT calculations. They could be included
by adding thermal noise to the density currents,’” that is,
replace eq 2 by

atpa = Vr Z fdr/ Aaﬂ(r’ r/)VMuﬂ + ja
B (38)

where the stochastic current j.(r, ) is to a Gaussian random
vector field with zero mean ((j.(r, t)) = 0) and correlations
according to the fluctuation—dissipation theorem (jra(x,t)
jp(e' ') = 2kgT6(t—t") Ayy(rx’) 6 (I, ] are Cartesian
coordinates).

It is worth recapitulating some of the approximations and
assumptions that are entering our coarse-graining scheme.

First, we have assumed that the dynamics of inhomogeneous
polymer systems can be described by an effective Markovian
model. To account for the multitude of different relaxation
times in polymer systems, we have treated the mobility as an
adjustable q-dependent function; however, explicit memory
effects were neglected. Wang et al.°® have recently devised a
dynamic RPA theory for polymer systems with a frequency
dependent Onsager coeflicient and showed that it successfully
describes the decay of composition fluctuations in diblock
copolymer melts (similar to Figure 4 here) and the onset of
spinodal decomposition in homopolymer mixtures. Their
Ansatz can easily be generalized to a dynamic SCF theory
with a time-dependent memory kernel. It has the advantage
that it includes memory explicitly, and does not require ad hoc
adjustments of “effective” mobility functions. On the other
hand, effective Markovian models are computationally more
efficient in many cases.

Second, in eq 2 the mobility matrix describing the time
evolution of density fluctuations should really be derived from
the collective density correlations. Here, we have replaced
them by a sum over intrachain density correlations in the spirit
of a mean-field theory. Recently, Ghasimakbari and Morse'"®
have used the collective structure factor to analyze the effective
q-dependent diffusive relaxation of compositional fluctuations
in symmetric diblock copolymer melts. They fitted the decay of
the dynamic collective structure factor by a single exponential.
Their results in the regime (yN) < 10.5 are comparable to ours
in Figure 2.
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Third, when deriving our final expression for A(q) in eq 16,
we have linearized the free energy density functional and thus
assumed that density variations are small. We determine the
mobility function A(q) from simulations of a homogeneous
bulk melt at yN = 0 but then use them in DDFT calculations
for inhomogeneous, ordered systems. This is partly motivated
by the finding that A(q) hardly depends on y in the disordered
regime of a block copolymer melt. Nevertheless, at high y and/
or in strongly inhomogeneous systems corrections must
probably be applied.

We have formulated our approach for diblock copolymer
melts, but it can easily be generalized to mixtures. Starting
from eq 2, one can simply replace the mobility function A, =
Agfﬁ po/N by a sum over chain mobilities, that is

/ 1 - ’ S /
Aa/)’(r: ') = Z ﬁp(y) (r, r )Asxb”(rx r')

y 7 (39)

where the sum y runs over chain types, N, is the length of
chains of type 7, 7 (r,r') is the locally averaged density of
monomers from chains of type y (hence p'/N, is a chain
density), and A((f/,?' ) is the corresponding single chain mobility
function. Note that the prescription for determining the local
average ﬁ(” (r,r’) must be symmetric with respect to r and r’

(eg, 77 ) = p(125).

In mixtures, the diffusion of chains of different type adds
another slow time scale to the dynamics of the system. In our
previous work,®” we have compared the dynamics of
interdiffusion at A/B homopolymer interfaces from different
DDFT calculations with simulations. We found that the results
obtained with local and nonlocal DDFT coupling schemes
were very similar, and all in very good agreement with the
simulations. We conclude that studies of homopolymer
interdiffusion do not seem to be a very sensitive test of the
quality of a DDFT model, and therefore expect that the new
schemes proposed here will also perform well.

Our bottom-up approach for constructing mobility matrices
has been tested for Rouse chains but it is not restricted to that.
It only requires as input the single chain dynamic structure
factors from simulations of the target microscopic systems. In
future work, we plan to study polymer mixtures and melts in
other dynamical regimes, for example, entangled melts, or
systems where hydrodynamics are important.

The DDFT theory relies on the assumption that the polymer
system under consideration is only weakly disturbed from
equilibrium. It assumes that the polymer conformations are
close to local equilibrium at all times and that the dynamic
process under consideration is still suitably described in terms
of a free energy landscape picture. Therefore, it cannot be
applied in situations far from equilibrium where the
distribution of polymer conformations is distorted, such as,
for example, polymers under shear at high Weissenberg
numbers which are stretched out. Studying such systems
with DDFT models requires novel approaches where not only
the mobility functions but also the density functionals
themselves have to be reconsidered.''”'** However, DDFT
theories that were constructed as proposed in the present
paper can be used to study ordering processes and
spontaneous self-assembly in inhomogeneous polymer mix-
tures and thus to evaluate the role of processing and pathways
for the final structures.
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B A.EVALUATION OF THE GREEN-KUBO INTEGRAL

In this appendix, we discuss the results from the evaluation of
the integral (eq 13). In the spirit of mean-field theory, we will
assume that the mobility can be derived from a single chain

mobility, A = %/\(S), which is derived from the current—

current correlations of a single chain, that is, the quantity

N
Ia/}(q! t) = z ig(R()-R(0)R (t)R (O)y(“) B

k,j=1 (40)

If interchain correlations can be neglected, one has (j,(q, t)
jp(=aq, t)) = nly4(q, t), where n = V% is the number of

polymers in the system and hence

(S) GK - d
@ =17 [ g0 6 "

The full chain mobﬂlty (all monomers) is given by the sum

A(q) = XA (@).

We first discuss the full chain mobility at q = 0. Equation 40
then reduces to I(0, t) = Zaﬂ L,;(0,t) = ij (Ry()R;(0)).
After evaluating the average of qq with respect to all possible
directions q, we recover the well-known relation between the
chain mobility and the velocity autocorrelation function of the

center of mass of the chain (V(t) = sz R (1)):

NZ
A(s),GK(O) —

f d(V(H)V(0)) =

kg T (42)

Here D, is the diffusion constant of the whole chain, and the
factor N* accounts for the fact that A®) describes the response
of monomer current (scaling with the number N of
monomers) to a thermodynamic force acting on monomers
(i.e., the total force again scales with N).

For q # 0 and t > 0, I,4(q, t) can be derlved from the single
chain dynamic structure factor, defined as®

N
1 e (Ry(0)-
WOPE 3 RO, @)

kj=1 (43)
by taking the second derivative with respect to ¢
d2
Ls(q t): qq = -N " —58,5(0 1) (44)

Putting everything together, we finally obtain the following
Green—Kubo relation between the mobility function and the
single chain dynamic structure factor

AGK(g) = ﬁ[ Ly th 2,5 t)}+hm f dt L(q): qq] (45)

This quantity can be measured in microscopic simulations.
The second term in eq 46 has to be added explicitly if the
microscopic model evolves according to overdamped Brow-
nian dynamics, to account for the contribution of the delta-
correlated stochastic white noise at t = 0 to eq 13.

Figure 10 shows simulation results for single chains in a
homogeneous melt from Brownian dynamics and inertial
dynamics simulations (see Section 4.1.1 for a detailed
description of the simulation models). Figure 10ab shows

the results for g(q, t) for gR, =1 (a) and qR, = 4 (b) and
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Figure 10. (Left) Normalized single chain dynamic structure factor of
homopolymers with length N = 40 in a homopolymer melt, as
obtained from Brownian dynamics (red) and inertial dynamics
(green) simulations at qR; = 1.0 (a) and gR, = 4.0 (b). Black line
shows the analytical predlctlon of eq 47. (Right) Normalized mobility
function obtained via the Green—Kubo relation (eq 46) from
Brownian dynamics (c) and inertial dynamics (d) simulations. The
derivatives of g(q, t) were taken numerically using a forward difference
scheme with different values of At as indicated. The units ¢, and R,
are simulation units (see text)

compares them with an analytic result for ideal free Rouse

chalns, 3 which is exact in the limit N — oo
@=Ly ) li —jl(qR,)*  4(qR,)’
S ) = — —¢’Dt — -
g\q N - exp[—q N 2

Ditp'rx

<3 ol ol ol -2

Here, the index p represents the pth Rouse mode, and the
indices i, j represent the ith and jth beads on the polymer
chain. The agreement with the Brownian dynamics simulaton
data is very good. Figure 10 c,d) shows the corresponding
Green—Kubo mobility functions. Somewhat disappointingly,

(46)

they are found to be zero within the statistical and systematic

error. Deviations from zero can be traced back to discretization
. . .o d .

artifacts when taking the derivative Eg(q, t) numerically.

In the case of overdamped Rouse homopolymers, we can

evaluate eq 46 exactly using the relation®’

1
(O)N

L inglq, 1) = 2 (H, explia-(R, - R))): aq

dt
(47)

with the Rouse mobility matrix Hy; = D16y The first term in
eq 46 yields %%g(q, t)l,o = —DyNkT. The noise term
contributes with 2kgTD,N /0 “dr 5(t) = DyNkgT. Since these

two terms cancel, the resulting Green—Kubo mobility is zero,
as suggested by the simulations.
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